Skip to main content

How It Works

FirePan combines AI-powered analysis with human expertise to deliver comprehensive smart contract security.

The AI + Human Hybrid

Our approach leverages the strengths of both automated and manual analysis:

┌─────────────────────────────────────────────────────────┐
│ Your Repository │
└─────────────────┬───────────────────────────────────────┘


┌─────────────────────────────────────────────────────────┐
│ Static Pattern Analysis │
│ • 15+ vulnerability patterns │
│ • Solidity/Vyper support │
│ • Sub-second execution │
└─────────────────┬───────────────────────────────────────┘


┌─────────────────────────────────────────────────────────┐
│ AI Verification Layer │
│ • LLM-powered false positive filtering │
│ • Context-aware analysis │
│ • Exploit hypothesis generation │
└─────────────────┬───────────────────────────────────────┘


┌─────────────────────────────────────────────────────────┐
│ Human Review (Audits) │
│ • Senior auditor validation │
│ • Complex logic analysis │
│ • Business context consideration │
└─────────────────┬───────────────────────────────────────┘


┌─────────────────────────────────────────────────────────┐
│ Actionable Report │
│ • Prioritized findings │
│ • Remediation guidance │
│ • Code snippets and fix suggestions │
└─────────────────────────────────────────────────────────┘

Analysis Pipeline

Stage 1: Pattern Detection

Our scanner runs 15+ security patterns against your codebase:

CategoryExamples
CriticalUnprotected selfdestruct, delegatecall to untrusted targets
HighReentrancy, tx.origin authentication, unchecked calls
MediumMissing access control, frontrunning risks, oracle dependencies
LowDeprecated patterns, missing visibility specifiers

This stage completes in ~2 seconds per repository.

Stage 2: AI Verification

Raw pattern matches include false positives. Our AI layer:

  1. Analyzes context - Is this pattern actually exploitable?
  2. Checks mitigations - Are there guards the regex missed?
  3. Prioritizes findings - Which issues matter most?

This reduces false positives by 60-80% while maintaining high recall.

Stage 3: Deep Analysis (Audits)

For comprehensive audits, our autonomous agent:

  • Builds knowledge graphs of contract interactions
  • Generates exploit hypotheses based on attack patterns
  • Tests invariants to find logic bugs
  • Simulates attack scenarios across contract boundaries

Stage 4: Human Validation

For boutique audits, senior auditors:

  • Review AI-generated findings
  • Analyze complex business logic
  • Verify exploit feasibility
  • Write detailed remediation guidance

Continuous Monitoring

Beyond one-time scans, FirePan provides:

PR Checks

Every pull request triggers a security scan:

# Example GitHub Action
- name: FirePan Security Check
uses: firepan-labs/security-action@v1
with:
fail-on: critical

Dashboard Alerts

Get notified when:

  • New vulnerabilities are detected
  • Risk scores change significantly
  • Dependencies have known issues
  • Findings are resolved

Trend Analysis

Track your security posture over time:

  • Finding counts by severity
  • Time to remediation
  • Code quality metrics
  • Coverage statistics

Security Guarantees

Data Privacy

  • Code is analyzed in ephemeral containers
  • No persistent storage of your source code
  • Results are encrypted at rest
  • SOC 2 compliance (in progress)

Accuracy

  • 95%+ recall on known vulnerability patterns
  • AI verification reduces false positives
  • Human review for critical decisions
  • Continuous pattern updates

Next Steps